M45 – Subaru! (November 2022)

My first attempt at the Pleiades Star Cluster (M45)

The Pleiades Star Cluster (M45)
The Pleiades, or as it is called in Japan – Subaru, has been near the top of my list of deep sky objects since I began to play in astrophotography. This star cluster is one of the most prominent objects in the night sky and can be easily seen with the naked eye, although it is a stunner through binoculars or a scope. Folks with very good vision under dark skies have been reported to be able to see seven stars, giving this cluster another of its names – the Seven Sisters. Whatever you want to call it, M45 is a relatively young cluster of approximately 1500 young stars (the cluster is thought to have formed around 100 million years ago). The majority of these stars are bright-burning blue stars and, as this cluster passes through a dust cloud in the Milky Way, the blue light from the brightest stars reflects off this foreground dust creating the blue nebulosity that surrounds them. M45 is potentially the closest star cluster to earth at about 444 light years away and is the nearest Messier object to earth.

Collecting the data
Along with the Orion Nebula (M42), M45 is considered to be one of the hard easy targets for astrophotographers. It is relatively bright with a magnitude of 1.6, so that helps with not needing particularly long exposures that many dim DSO’s require. However, there is a lot of dynamic range in the light coming from the cluster, with bright stars, a nice nebula and much dimmer dust clouds that are not well lit by the stars. In my image presented here, you can see some of this dimly illuminated dust throughout the image. To really capture this dust well, a lot of integration and/or longer sub-exposures are required. I am happy to have pulled enough of the detail in these areas with heavy processing without too much injury to the photo quality.

Me waiting for night and the wind gusts to die down. Did I mention it was cold! Photo by Miguel Acosta.

To account for the high dynamic range presented with this target, I had planned on taking two sets of “lights/subs” so that I could capture the fainter dust and nebula without overexposing the bright primary stars of the cluster. Then, I could process these two sets in a way to blend the two exposures, hence capturing the total dynamic range presented. This is pretty easily said, but at my level of experience, it was harder to put this plan into place. I knew that I would have to experiment a little and make the decisions on my camera settings on the scene.

As usual, Miguel and I imaged M45 at the Bortle 4 sky location at Danville Conservation Area. Other than a few late hunters leaving with the sun, we had the place to ourselves except for the owls, coyotes, deer and armadillos. The forecasts were true and we had clear skies with mediocre seeing and transparency. It was a cold night! Temperatures ranged from the low 20s to about 14 degrees Fahrenheit over the course of the night. The heat packs on my lens and Miguel’s battery powered heat bands on his scope really did the trick with preventing dew and frost from forming on our optics.

Equipment
For this target, I used the unmodified Canon 7D mkii and a 300 mm f/2.8 is lens. As usual, I reviewed my options at Telescopius and found that this was a good focal range (480 mm focal length equivalent). However, this choice would give me some problems.

I used the Skywatcher Star Adventurer without guiding mounted on the William Optics vixen style base. Although this is a great tracker and platform, I knew I would be pushing the boundaries of what this unguided setup could handle. At first, I could not get good tracking results with this heavy payload at 30 second sub-exposure lengths. With most photographers imaging this at 1-2 minutes, I knew I was really going to be pushing to get the signal to noise ratio where I needed it to be. But, the 30 sec subs where just unusable, so I took the first set at 20 seconds and ISO 1600. This would turn out to be a nice exposure for the brightest stars.

As I sat in the car thinking between outings to check battery life and focus, I knew I needed to find a way to increase my sub-exposure/signal if I wanted the image to be close to what I was envisioning. Around 11:00pm I decided to redo my polar alignment, rebalance and tighten down the rig to see if I could get to 30 second subs. I tried a few shots and although it wasn’t perfect, it looked like this could work. I checked the histogram on the back of my camera and it still wasn’t where I needed it to be. Although I was hesitant, I decided to increase the ISO to 3200. After doing this and checking the histogram, I knew I hit the sweet spot for the individual sub-exposures. Hopefully my calibration frames and the total integration time would keep the signal to noise ratio where I needed it to be. I shot another couple of hours at these settings to get the exposure I needed for the nebulosity and dust.

Imaging details
Lights: 465 light images taken at 20 sec/ISO 1600 (manually removed obvious bad subs and used 408 subs for a total of 136 minutes of integration).
338 light images taken at 30 sec/ISO 3200 (manually removed obvious bad subs and used 216 subs for a total of 108 minutes of integration).  
Darks: 32 taken at each ISO
Bias and Flats: Not taken. Removed most vignetting and chromatic aberration while converting RAW images to TIF

Processing
I tried this two different ways. First, I created two different stacks in Deep Sky Stacker (DSS) from the two different sets of light data I had collected. I also stacked everything together in two different groups within DSS and used their “Entropy Weighted Average” (HDR) stacking mode. I then stretched and processed. For the first option, I used masking in Photoshop to blend the two “exposures” together to create the HDR effect. It was most likely due to the differences in how I processed following the stacking (this is not something I cannot do by recipe yet), but I found I like the image better when I started from the HDR stack by DSS, which is presented here.

Problems and learnings
I already went into some detail about the struggle to get sub-exposure lengths where I needed them, pushing the boundaries on ISO and the need to redo PA and balancing to get to the sweet spot. There was also the time where I walked away for an hour without the shutter release button on the cable being engaged. Overall, I see the need to increase my efficiency. Not including the time it took to take the dark calibration frames and breakdown for the night, I estimate that we had about eight hours of good night skies to take our light frames. I was only able to capture about 5.5 hours of data in this time. Part of this is due to the time it takes to stop the process to check battery life and focus – this will always be the case. But I also lost time with the other things I mentioned. If things had gone perfectly, I could have had about two more hours of light frames. Ah well, I should get better with experience.

Conclusion
This was a long and cold night but I think Miguel and I both think it was well worth the time and effort. I remember getting into bed a little after 6:00am, wondering if I had collected the data that I would need to make the image I had envisioned. It definitely isn’t perfect. I had to toss a lot of the 30 second sub-exposures due to pushing the boundaries of unguided tracking with that heavy payload and focal length. Even after that, a close look will reveal some ugly and mishappen stars due to imperfect tracking and shooting with the lens wide open. I’m not too concerned with the star quality, however. As long as the target looks good, I am happy. Maybe some day I’ll revisit M45 and use the 200mm lens. I should easily get 30-60 second subs with that lighter rig and hopefully have more of the prominent dust in a wider field of view.


M31 – The Andromeda Galaxy – Redux (October, 2022)

My second attempt at the Andromeda Galaxy (M31)

I originally photographed M31 in August of 2020 as my first serious attempt in photographing a deep space object (DSO). I did not make many other attempts in DSO photography until the past couple of months where Miguel and I have had hard times thinking about anything else. There are multiple sides to this type of photography and so many ways to improve and learn. This is definitely the most technically challenging photography I have ever done. I’ll say this new attempt at M31 is a significant improvement over my first, mainly due to increased integration time and learning better processing techniques.

The Andromeda Galaxy (M31)
You can learn a little about this section of sky by visiting my first post. In addition, here are a couple other factoids about this galaxy. One of the coolest things I’ve learned since getting into astronomy and DSO imaging is the size of a lot of these objects relative to other things that we all routinely see in the night sky. Sure, stars are small in our vision and there are a lot of very small objects that need very large focal lengths to see. But, many DSOs are actually very large. We don’t notice them due to their low magnitude of brightness. Many nebulas cover large parts of our sky, for example. For M31, it’s apparent size on the long axis is ~ 3.167 degrees. The size of the full moon is ~ 1/2 a degree, so M31 covers an area a little more than six full moons!

Andromeda was first formally described by Persian astronomer Abd al-Rahman al-Sufi in the year 964. Did you know that many of the first astronomers were living in the middle east? It’s true – many of the stars still carry their original Arabic names. Andromeda and other similar galaxies were originally thought to be groups of gas and stars within our Milky Way. The discovery and proof that Andromeda was its own “island universe,” like our own, did not occur until the 1920s. Over the last century, M31 has been extensively studied and is now thought to contain ~ one trillion stars.

Collecting the data
The new moon period, which allows for the best low-light conditions for astrophotography, in October is troublesome. Miguel and I checked and double checked the forecast and found the best potential night was on October 22/23. We are finally getting some rain in eastern Missouri and most of this period is forecast for significant clouds. The night we chose was mostly cloudless but was not perfect. Winds were 10-13 mph with regular gusts up to 20 mph. In addition, seeing and transparency were on the poor side due to the winds and high humidity. This was not optimal, but it was still the best apparent night to try, so we did. To aid with the winds, we setup on the downwind side of a couple of hay bales and they did a pretty good job of acting as wind breaks. We imaged at my favorite site – Danville Glades C.A. 

Here I am during one of my every 30 minute checks of focus and battery power. Doing AP with a DSLR and regular lenses is quite a chore! Photo by Miguel Acosta.

Equipment 
I had originally planned to shoot with my Canon R5 and the Canon ef 400 mm f/4 do ii lens. This framed M31 very nicely in Telescopius and I was eager to see how this lens performed in astrophotography purposes. However, with the winds forecasted, I decided to use a smaller lens that would be less likely to be affected. I wound up using the Canon 7D mk ii and the Canon 200 mm f/2.8 lens instead. This put M31 slightly smaller in the frame, but I thought it would still stand out well enough after a marginal crop. 

I used the Skywatcher Star Adventurer without guiding and used my new William Optics vixen style base to mount the tracker on. This mount in combination of using a green laser pointer allowed for very good and easily obtained polar alignment. I’m happy to say that I need not dread getting PA any longer and I can make this step just part of the routine. 

Imaging 
We had some clouds early on in the night. This wasn’t too much of a problem because they cleared out by about 9:30 pm and Andromeda was still in low latitude sky glow until about 10:00 pm. Imaging went pretty well. I did not have to throw out many lights due to wind or tracking errors. One problem that did become apparent was the quality of the stars. When wide open, this lens produces fat stars with pretty bad chromatic aberration. This was probably exasperated by the poor seeing and transparency. I knew this could potentially be an issue but wasn’t too concerned as I was mostly concerned about the galaxy. Anyway, next time I will stop this lens down by 2/3rds of a stop to try and improve this. The settings I used were f/2.8, 30 second exposures at ISO 1600. 

Lights: 492 light images taken (manually removed obvious bad subs and used 447 subs for a total of 223.5 minutes of integration). 
Darks: 36 
Bias: 50 
Flats: Since flats are a pain to take and since I am using a camera lens that can be corrected for vignetting when processing the raw light files to tif format, I did not take or use flats for calibration. This was the first time I tried this and it seemed to work very well. This will be my new strategy going forward. 

Processing 
Deep Sky Stacker worked! This was the first time I had good enough quality subs that DSS would register and process everything. After about one and a half hours of processing, DSO had processed my linear image. Processing was the biggest learning revelation I had from this project. Pieces finally came together. After stacking in DSS, I used various manual techniques in Photoshop along with StarNet for star removal, GraXpert for gradient removal and Astronomy Tools action set. I finally have a big picture of my step-wise work flow and this should get easier and better going forward. 

Conclusions 
Including driving time, setup time, imaging time and processing time, I estimate it took about 20 hours of concentrated work to produce this one image seen here. When compared to my previous attempt of this object, I am quite satisfied by the results and the time spent was well worth it to me. The increase in integration time along with my improvements in post processing really paid dividends. Maybe I’ll try this target again in a couple of years if I have made improvements in equipment, techniques and processing. 

Clear skies! 

-OZB 

NGC 281 – Pacman Nebula

The Pacman Nebula (NGC 281)
The Pacman Nebula is a large emission nebula that is approximately 48 light years across and nearly 9500 light years from earth. It was named for its resemblance to the popular Pac-Man character in video games, although you’ll probably have to use your imagination to see this in my image (Pac-Man is facing towards the top of the image). Unlike the the popular Namco mascot, this Pac-Man does not gobble up dots, it is actually creating them; NGC 281 is a star forming region that lies near the constellation Cassiopeia.

Collecting the data
Miguel, who is now getting serious into deep sky object (DSO) photography, and I met at what is now my favorite location for this work – Danville Conservation Area in Montgomery County, MO. This is classified as a Bortle 4 sky location and we were working under near perfect conditions of a new moon, no clouds, low winds and cool temps (mid to low 40s). Selecting a great night was one of the successes of this project. Miguel was just beginning to work on his new rig, attempting polar alignment for the first time and trying out his more sophisticated system of go-to and guiding. I use a simple unguided star tracker and the camera gear I use for normal daytime photography and had my target in mind and planned a night of imaging.

The photographer’s kit used in this project.

Gear used
Canon 7d mkii, 300mm f/2.8 lens is mki, Sky-Watcher Star Adventurer tracking mount with extra counterweight balance, Bahtinov focus mask, red-light scope, heat packs used for prevention of dew formation on lens, all setup on a sturdy Gitzo carbon fiber tripod and anchored to a concrete block.

Imaging details
Lights: Approximately six hours with 30 second subs (manually removed obvious bad subs and used 512 subs for integration.
Darks: 32 darks captured in field after imaging
Flats: 40 flats taken the next day from home
Bias: 67 bias images

Processing
Image shown here was stacked using Sequator. Stacked file was processed in PhotoShop CS6, manually following processes described in various YouTube videos. See below for details learned from this processing session.

Problems and learnings
This was a good night but definitely not perfect. Again, I struggled with getting proper polar alignment. My main issue was not identifying Polaris, necessarily, as we were easily able to find it with our naked eyes. The problem came from being able to correctly identify the star while looking through the reticle. Ultimately, I picked the most likely candidate and went with that. I didn’t have much star trailing in my 30 second subs, so I think I did an OK job. I did notice that the tracking was off and I had to recenter the target about once an hour, but that is due to using an unguided tracker and the weight of my rig. This is something I’ll just have to remember to do with future objects.

William Optics vixen style base mount. A must have!

I have picked up a couple pieces of gear that will dramatically help with achieving proper PA on future projects. First, I purchased a green laser pointer that I can shoot directly through the reticle and line up perfectly with Polaris. More importantly, I finally picked up a new wedge/base mount to support the tracker. This is the piece that is critical in getting proper PA. The mount that comes with the Sky-Watch Star Adventurer is severely lacking in many ways and is frankly a POS. The William Optics model I now have (see photo) is all metal, allows for more precise control in declination and is much easier to control right accession with. The differences are like night and day! I didn’t have these two things for imaging NGC 281, but I have them now and tried them in the yard one night and achieved perfect polar alignment in less than 15 minutes! I feel much less anxiety about this step now and wish I hadn’t waited so long to pick up this base mount.

The biggest mistake of the night was something I was aware of but simply forgot to handle. I left the settings for auto orientation on in the camera. This means, as the mount tracked the object over the course of the night, about half of my images were in the horizontal orientation and half of them were in the vertical orientation. This is a much bigger problem than it seems. In most software, you can change the orientation of an image with a simple mouse click. However, the orientation is actually embedded in the exif data of your RAW files. I came to find out that most stacking programs will not orient all of the files for you and, therefore, I was losing half of my light subs in the stacking process. It is possible to change the exif data to make them all the same, but this requires computer skills that I simply do not have. Thankfully, Sequator did accept all of my subs, but it is not the best software for stacking DSOs. I would love to fix this in the data I have collected for NGC 281 and be able to stack in Deep Sky Stacker or ASTAP one day, but I will definitely remember to turn this function off in camera in the future.

Processing after stacking was the usual barrel of fun. I found it a little easier than I did for M31, but I think I have a long way to go. I was hoping to get much more detail in NGC 281. I think I had ample integration time and feel there may be some detail I can pull out with better processing. Maybe the fault lies in my images themselves and I could do better with PA and tracking. It might also have to do with the focal length. With the 480mm focal length equivalent used for this object, I don’t have much more opportunity to improve here, but I could have used a 1.4x teleconverter and get 672mm focal length equivalent. I think there was room to do this with this object, but I would have had to recenter more often and lost some light gathering in the process. Maybe next year!

The author setting up for a night of imaging. Photo by Miguel Acosta.

Conclusions
Despite the final outcome, which I am satisfied with, this was a lot of fun. I’m finding that I can have fun doing almost anything as long as I am outside. This is getting truer all the time. Although this process has its frustrations and anxieties, I guess you can call that a “good stress.” I’ll always remember the pair of Barred Owls squawking away at each other and the coyotes howling and barking on at least three sides from where Miguel and I worked. In addition, while I was breaking down at about 3:00 am, two armadillos noisily burst through the grasslands, coming up to within ten feet of me to see what I was doing.

My hope is to continue this and image one object a month. I think I can sacrifice one good night’s sleep a month for such experience, learning and memories.

Clear skies!
-OZB

M31 – The Andromeda Galaxy

My first attempt at the Andromeda Galaxy (M31)

During the most recent new moon, I finally took out my star tracker and kit to try my hand at photographing a deep sky object (DSO) for the first time. I knew this was going to be challenging and this first attempt would be more for learning than producing an image that I would be excited about. However, thankfully it was both – it was a beneficial experience in that I got practice in all the process surrounding making an image of this sort (I will go into details below), and at the same time the final image turned out better than I expected, especially considering the challenges I had. For those of you who don’t care about the process, you can stop reading here – I won’t blame you. For those of you interested, I will provide some of my notes and things learned. You can tell me if it was worth the hassle or not.

The Andromeda Galaxy (M31)

The Andromeda Galaxy is also known as Messier 31 and NGC 224. It is classified as a barred spiral galaxy and is about 2.5 million light-years from earth. It is the largest galaxy in our local galaxy group and is on a direct path to merge with our Milky Way in about 4.5 billion years.

Did you notice? In this image there is more than just the M31 galaxy. There are two other galaxies that move along with Andromeda. Messier 32 is on the bottom side of M31 at about four o’clock. M32 is a compact elliptical galaxy and is comprised of mostly older red and yellow stars that are densely packed. Messier 110 is above M31 in this image and is a dwarf elliptical galaxy. There apparently are at least 11 other satellite galaxies of M31, but none that are apparent in my image to my knowledge.

Collecting the data

For my first attempt, I traveled to the Astronomy Site at Broemmelsiek Park in Defiance, MO. This is an excellent place that provides several concrete platforms along with electrical access for those with equipment that needs it. I did not, but I was looking for an area not too far from our home to find as dark of skies as possible. The sky at this location (Bortle class 5) is darker than where we live (Bortle class 6) and is 25 minutes away. This is a pretty good site for viewing the night sky. I was really excited when I turned my birding scope at 60X power to Jupiter and was not only able to view the banding and colors of the planet, but could also make out four of its moons! However, there was still enough light pollution here to make serious astrophotography a bit of a challenge. Unfortunately, this was more of a challenge due to where M31 was located in the first half of the night. At this time of the year M31 rises from the NE sky and it was not until ~ 11:30 pm that the galaxy rose enough out of the skyglow of civilization to make me a little more comfortable.

For this attempt I was using a Canon 5d mk iv camera and a Canon 300 mm f/2.8 is mk i lens. I balanced this heavy kit on the Sky Watcher Star Adventurer Pro Pack star tracker. Because of the weight of this kit, I used an additional counterweight and bar to achieve balance. This is near the weight limit that this star tracker was designed to hold.

The first step in going about this is to get polar alignment with the celestial north pole. I won’t go into too much detail here, but I found this to be particularly problematic. After trying for 45 minutes I eventually decided I was “close enough” but definitely not at optimal alignment. Getting as close to perfect polar alignment is critical at longer focal lengths and exposure times in order to capture the stars as pinpoints of light. A big part of my problem here was working with the mounting “wedge” that comes with this tracker. I found it quite difficult to get the precise control that is necessary to align Polaris where it needs to be. I will eventually need to replace this wedge with one of higher quality.

After getting marginal polar alignment, my next step was to mount this rig, get it balanced and then point it at the target all while not moving the tripod at all! I am sure I moved it somewhat off the alignment that I managed to get. Because of the light pollution, I was unable to see M31 with my naked eye, which is possible under dark enough skies. This made locating M31 more challenging than I expected. With the help of star charts and astronomy apps on my phone, I eventually found it by taking shorter exposures with very high ISO to be able to compose close to how I wished. This probably took another 30 minutes.

With the mount polar aligned, the target in my sights and the tracker running, I was finally able to collect my data. My settings were as follows: 20 second exposure time, f4 and ISO 1600. A little explanation here is needed. With this tracker and kit, I could theoretically get between one and two minutes per exposure. However, with the imperfect polar alignment I knew I had and the fact this was my first attempt, I decided to go with a shorter exposure. For my aperture, I gave up a full stop of light. However, I was worried about how the stars looked fully open and decided at the last minute to close to f4 to gain a little in the IQ arena. I am not sure this was the best decision or not and will probably try wide-open next time..

I collected 265 “lights” before clouds, that were completely not predicted by all of my weather apps came in and closed me down for the night. Later I cut this down to 225 lights that were unaffected by clouds or airplane lights for a total exposure time of 1.25 hours. While in the field you are supposed to take “darks” – these are frames at the exact settings under the same environmental conditions but you throw your lens cap on. These images are then used by the computer programs to remove the digital noise that is produced during capture. Somehow I forgot to do this in the field and did not remember until I was slipping into bed at 3:00 am. So, I got out of bed and went outside to take them.

Processing the data

It may seem crazy looking at this image, but I spent around 12 hours processing this. Much of this time is due to me not being very familiar with what I was doing. I also prefer to process as manually as possible, and used no specialized plug-ins in Photoshop.

Prior to Photoshop, all of the data needs to be stacked in the computer by specialized software. I first tried to use Deep Sky Stacker (DSS) that I have used for this type of work before. However, I ran into problems. After loading all my lights and calibration frames the software refused to run and gave me typical ambiguous reasons. Doing some troubleshooting online it looks as though my data weren’t good enough – apparently my stars were not round or sharp enough and I could do nothing to get DSS to process my data. I then played around with a couple of other free astro-stacking softwares. Most of these were far too technical for me to easily learn them. I finally found Sequator and this worked great. It does not accept “bias” calibration frames, but I doubt that I could recognize their absence in the final product.

I then took the stacked image and went through the “stretching” process in Photoshop. This is where you increase the local contrasts, trying to bring out details in the arms of the galaxies, nebulosities, etc. There are a number of steps involved in this last bit of processing. Much of what I did I learned from Charles Braken’s book, The Deep-Sky Imaging Primer and YouTube videos from Nebula Photos, Peter Zelinka and others.

Conclusions and what I learned

I realize this type of image is built mostly by technology. There really is not much subjectivity when making images of deep-space objects. It either looks like the thing or it doesn’t. I also realize that there are people doing this that have much more appropriate equipment and knowledge and can produce a much better version of a DSO than I could no matter how much I practice. However, I have found it very rewarding to be able to produce an image of M31 myself, especially using camera equipment I already owned and use for other things.

Here are some things I believe I have learned and can potentially help me improve in my future attempts at making DSO images. If you are an experienced DSO imager and can offer any further suggestions, I would be very much appreciative!

  • Getting better polar alignment
    • Getting more practice should help here and I will try and do this on nights that I am not planning on shooting, potentially from my yard.
    • I have read and seen videos where people are suggesting upgrading the wedge mount and I will do this eventually.
  • Collecting more data
    • I believe I could pull more details from the galaxy’s disk, including colors by collecting more data. I was limited by clouds for this one, but next time I hope to get at least four hours. I know that some pool data collected from multiple nights, but that is another layer of complexity I probably do not need right now.
  • Finding darker skies
    • There is no doubt that skies with less light pollution will allow for better data collection at a faster rate. This will definitely help in pulling fine details and colors from DSO’s. There are light pollution filters, but I have heard mixed thoughts regarding their benefits.
  • Beware of dew
    • I knew this, but forgot to take the heating elements to wrap the lens barrel in order to prevent dew forming on the lens objective. Thankfully, the lens hood seemed to protect from this, but at the end of the night I did notice a thin haze of condensation on the lens.
  • Learn more on processing
    • There are numerous ways to skin this cat and I hope to learn more by watching more techniques on YouTube. With trial and error, I am certain that I can improve the final image by learning more here.

Other than the above, the only thing I can think of that would make a big difference is purchasing technology. People who really get into this use specialized telescopes, specially modified cameras, guided trackers run by computers, filters and much more. However, I do not intend to go down this road and believe I can produce images that will satisfy me with the equipment I already have.

If you have an interest in DSO photography and have the basic equipment, I urge you to give this a try. All you need is a camera and lens that is about 100 mm – 500 mm. A star tracker is definitely helpful but not required! You can shoot DSO’s with simply a tripod. Other than that you will need to learn just a few things on how to adjust the settings on your camera and where to point.

-OZB

 

 

 

C/2020 F3 (NEOWISE) Comet

C/2020 F3 (NEOWISE) Comet in the northwest sky after sunset at Duck Creek C.A.

The NEOWISE Comet, whose actual name is C/2020 F3, was a pleasant surprise for the astronomical community who await such events as a newly discovered comet. First discovered in late March, the comet grew steadily brighter, eventually becoming the brightest comet to be seen in the northern hemisphere since Comet Hale-Bopp in 1997. According to the experts, this comet had an orbital period of about 4,400 years prior to making its latest trip through the inner solar system. It will now be another 6,700 years before beings on earth will be able to see it again.

C/2020 F3 (NEOWISE) Comet image taken at 200 mm focal length

I have long had a very strong interest in astronomy and astrophotography and the current pandemic has allowed me to do quite a bit of studying on both topics. Hopefully soon I can get the practice in this area that I desperately need. Although it has some issues, I was relatively pleased at capturing the closeup of the comet pictured above.

Although I had a star-tracking mount that would have been perfect for this situation, I had not yet used it so I did not make this the first time. This image was “untracked” using a full-frame camera and a 200 mm lens. It is comprised of 20 “light” images (the actual photos of the comet) taken at 3.2 seconds per exposure. The aperture was f/2.8 and the ISO/gain was 6400. I combined these images with 10 “dark” frames for noise reduction purposes.

The processing here could be better and I might give it another try sometime. But, both tails of the comet are visible and I think the background stars came out alright as well.

Milky Way at Lee’s Bluff, MO

After awhile the comet began to dive towards the horizon with the remnant glow from twilight. I happened to show up at Lee’s Bluff on the same night as accomplished Missouri nightscape photographer, Dan Zarlenga, and so we both turned our tripods around to the south and found this lovely scene. Here, the Milky Way has recently risen above a nice foreground of trees. Again, I wish I would have been a bit more prepared with a plan, but I guess this isn’t too bad.

-OZB

 

Floating the Upper Current

Upper Current in Autumn
Upper Current in Autumn

I’m finally ready to share a few more images from a float down the upper third or so of the Current River that Steve and I had the great fortune to experience this past October.  We started at navigable mile 8.0 at Cedar Grove Access and pulled out three days later at mile 51, the confluence of the Current and that other, oh-so desirable, Ozark stream – the Jacks Fork.  If one floats slow and quiet, the opportunity to see wildlife is very high in this National Park (Ozark National Scenic Riverways N.P.).  I’v shared a couple of images of these guys previously.  I believe we found 8-9 Mink during the first day of this float.  It was enjoyable watching them busily hunt along the stream banks, mostly oblivious to our presence.  As usual, Steve did a great job in keeping us quiet and pointed in the optimal direction for capturing some images.

American Mink
American Mink

It was quite a challenge to keep up with these guys as they fished.  This one below had caught a nice-sized crayfish and barely slowed to stop and enjoy his snack.

Ozark Lobster!
Ozark Lobster!

Here is a photo of one investigating the water prior to dipping back in.

Testing the Water
Testing the Water

Not only does a float down the Current allow for great observations of wildlife, but many geological features are most easily seen by being on the river as well.  Cave Spring can now be accessed via a nice newer trail, but it is much nicer accessing it by boat.  The endpoint of a vast and interesting karst drainage system, Cave Spring rises from the back of a short cave.  At the rear of this cave one can guide a boat over the vertical conduit of the spring, which is ~155 feet deep!  What an eerie sensation it is to shine your light down and still see no more than a fraction of the length of the conduit shaft.  In the image below, I am on a dry exposed shelf adjacent to the spring’s outlet and Steve is guiding the canoe towards the river.

Cave Spring
Cave Spring

Pultite is a spring found on this upper stretch of the Current River that is surrounded on all sides except the river by private property.  This means that one must boat or wade/swim to visit it.  At only ~ 1/10 the output of Big Spring, Pultite is still quite a good-sized spring with and average daily output of ~ 25 million gallons.  The effluent channel on this one is quite attractive and I hope to visit more often.

Pultite Channel
Pultite Channel

If day one was for the Mink, day two was our River Otter day.  We had no Mink, but 5 or 6 of these large weasels were spotted.

North American River Otter
North American River Otter

Not to forget the birds!  These days, a trip to nearly any permanent Missouri water source will likely bring an encounter with a Bald Eagle.  Observing these guys in the Ozarks will never get old to me.

Bald Eagle
Bald Eagle

Another constant companion on these floats are the Fish Crows, here pictured finishing up a little Ozark lobster.

Fish Crow
Fish Crow

We were fortunate in having mostly clear and dry skies on this trip, which allowed us to throw our bags directly on whatever gravel bar that struck our fancy and sleep directly underneath the stars.  A morning fire was necessary – not only to burn the dew off of our sleeping bags, but of course, for the river-water French-press coffee.  Dark skies on these streams afford great opportunities for astrophotography.  My only wish for this trip is that I was a little more tolerant of the cold, tiredness and laziness that limited my patience for getting better nightscape images… 😉

Nightscape on the Upper Current
Nightscape on the Upper Current

I will be posting more images of this trip on my Flickr account in the near future.  Thanks for visiting and I hope to post again in the near future.

-OZB

 

Dunn Ranch Prairie, July – 2013 Post One: Astrophotography

I had been wishing to visit Dunn Ranch Prairie in Harrison County, Missouri for a few years.  Part of the Grand River Grasslands, Dunn Ranch, along with Prairie State Park to the south is one of the two largest contiguous prairie habitats in Missouri.  Fortunately, Dunn is home to about 1000 acres of original, unplowed prairie alongside parcels that are in various stages of prairie reclamation via reconstruction activities by The Nature Conservancy staff.  With help from contacts at TNC (Hi and thanks Amy, Hillary and Randy!) and a recently found twin brother, Steve, who is as willing, able and interested in getting elbows deep in whatever Nature and the outdoors puts in our path, I had that opportunity as part of a five day excursion to the western half of the State.  We made stops to visit other prairie and marsh remnants nearby, but Dunn Ranch and adjacent Pawnee Prairie were our base.  I hope to provide tidbits of information about these endangered habitats and discuss some of the trials that TNC faces in these reclamation efforts and provide hopefully interesting accounts of Steve’s and my excursion in future posts where I plan to discuss birds/wildlife and landscape photography.  This first post is dedicated to astrophotography.

IMG_5168

Astrophotography has been of interest to me for some time now.  Being born and raised in urban environments, I can count on one hand how many times I’ve been able to witness a dark, clear sky – relatively free from light pollution.  Making images of this type of sky was one of the major goals for this trip.  Even without the aid of telescopes and tracking mounts, astrophotography with the dSLR can be a fulfilling challenge.  I scoured the web for months prior to the trip, trying to find techniques and tips for success.  With so much to consider, I knew this was going to be a mostly trial and error experience.

The internet is full of great “how-to” articles on how to go about making nice astrophotographs, so I will not go into too much detail.  We were fortunate in a number of ways concerning the environmental conditions for this endeavor.  First, obviously, one needs clear skies.  The first couple of days (and nights) were a bit overcast, but on the night all these images were taken, we had a mostly clear sky.  Second, for taking photos of stars, it is optimal to have little or no moon.  On this particular night, the moon was just a couple days past “new”.  But, that did not matter because the moon was almost in perfect sync with the rising and setting of the sun.  On this night, the fingernail moon was below the horizon by 10:00.  So, we had two important factors in our favor.  Other issues to consider are light pollution from ground sources.  We thought we were on the winning side here, being so far removed from any city of significant size.  What we came to discover is how much the camera’s sensor will pick up artificial light sources.  Even well past midnight, all the images I made show glow from the horizon, illumination that was not noticeable by the human eye.

Startrails Dunn 1

One other potential headache for consideration is aircraft and satellites moving through your frame.  Depending on the specific technique you use to create a star-trail image like the one above, you will either have one long exposure of up to an hour or longer, or a series of shorter images taken in continuous fashion and combined later in the computer.  Either way, in most areas of our country you will pick up the light signatures of these aircraft in your images.  I was quite surprised by the numbers of these trails that were picked up on the camera’s sensor.  In making the two composite-made star-trail images in this post I spent several hours painstakingly removing these by hand from hundreds of individual images used to generate these composites.   The yellowish green lights are trails from lighting bugs that collected over these images.  I decided to leave these alone.

IMG_5561

Although it may be pretty, a photograph of the stars alone with normal focal lengths usually holds little lasting interest.  I knew that to make something interesting and to relate it to place, I needed to find something unique and attractive to position in the foreground.  This would make a complete image.

The couple of days or so before this evening, I was checking out the landscape around Dunn, looking for these potential foregrounds and asking Steve to help me remember their locations and the general directions in which they faced.  These cut-steel/iron signs were quite popular with the different ranches in the area and I assume someone makes them locally.  I fell in love with this one on a prairie hillside at Dunn and knew I had to try this.  Unfortunately, this was getting quite late into the morning and I did not have the energy left to give it my all.  I used a longer focal length because of the distance of the sign from the road.  This gives a somewhat pleasant side effect of allowing for star trails to record in less time than it takes for a wide angle composition.  This image is one exposure of about 11 minutes.  If I had known the potential here, I would have given it more thought and probably put together a longer composite series to lessen the horrible noise and IQ observed in the RAW image.  Oh well, maybe next time.  Oh yeah, in this photo, the light pollution from the horizon works pretty well in back-lighting the sign and making some nice silhouettes of the prairie forbs.  We tried a bit of light painting, but it came nowhere close to this.

P.S. Can you name the constellation caught in this image above?

Startrails Dunn 2B

The image above I believe is my favorite of my astrophotography attempts.  I wish I could say I did my homework and knew exactly where the north star was and positioned it oh so perfectly between the gate posts.  Steve and I could not say for certain (Do you know how many stars there are up there!?).  All I did was try my best to center the gates in the middle of the frame as best we could in this dark night.  I wish I could say I knew exactly how long (how many exposures) I wanted/needed to get the rotating perspective seen here.  All I did was decide that I would try and fill an entire eight gig memory card.  This equated to about 350 13-second exposures for a total “exposure time” of about 75 minutes.  I did not even know how I was going to stack these together in the computer.  I knew there were a few specialty software as well as a manual option in PS.  I tried three different freeware apps and discovered the last one I tried, “Startrails” gave me the best results.  Anyway, this image will always remind me of sitting in the road with the camera doing its work, enjoying a couple of good beers with Steve and listening to wildlife: coyotes howling on three sides of us in the distance, Henslows Sparrows singing like it was the middle of the day and a presumable deer that walked just off the road past us less than 10 feet away.  I have no idea if the deer could see us or knew that we were there.

IMG_5566

I say with all sincerity that I would trade the benefits of living in a large metropolitan area just to have the privilege of viewing night skies like this on a regular basis.  How did we agree to give this up?  I guess this issue ranks up there with the question of my foreskin.  Nobody ever asked me and I’ll likely never have the opportunity to get it back. ;=)

Anyway, this was one hell of an experience and I can’t wait to give it another try.